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Abstract. Modelling is one of the key challenges in Constraint Pro-

gramming (CP). There are many ways in which to model a given prob-

lem. The model chosen has a substantial e↵ect on the solving e�ciency. It

is di�cult to know what the best model is. To overcome this problem we

take a portfolio approach: Given a high level specification of a combina-

torial problem, we employ non-deterministic rewrite techniques to obtain

a portfolio of constraint models. The specification language (Essence)

does not require humans to make modelling decisions; therefore it helps

us remove the modelling bottleneck.

1 Introduction

Many interesting real life problems can be formalised as constraint satisfaction
problems (CSPs). A CSP consists of decision variables with associated domains,
constraints on the assignments of values to a subset of decision variables and
optionally an objective function. Solving a CSP is a well studied practice. There
are many existing solvers, which employ advanced algorithms to reason about
given constraints and run e�cient search algorithms.

In order to solve a problem using a CSP solver, one needs to model the
problem at hand. CSP solvers have di↵erent input languages - a common input
language provides boolean and integer variables, arithmetic, logical and global
constraints on these variables. CSP solvers provide a relatively high level of
abstraction and expressivity when modelling a problem compared to MIP and
SAT, and they still provide fast and scalable black-box solvers.

Most real world problems contain complex combinatorial structures such as
sets, multi-sets, functions, relations, tuples, etc. Modelling a problem that can
naturally be specified using these high level constructs is not a straightforward
task - there are many ways to model a certain combinatorial object and a relation
between a number of combinatorial objects. Moreover these alternative ways of
modelling the same abstract expression do not dominate each other in terms
of e�ciency. Thus, given an abstract problem specification, building an e�cient
CSP model requires a great deal of expertise in CSP technologies and many
experiments.

This work is an ongoing attempt to automate the CSP modelling process. In
order to do so, we first design and implement a system to generate a selection
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of valid CSP models given an abstract problem specification. The natural next
step is to study relative strengths of generated models and design a system to
select a good (if not the best) model. We will also explore the selection of a
portfolio of models (as opposed to just selecting one) and running multi-model
search techniques on this portfolio.

2 Tool chain

Our automated tool chain takes the approach of specifying the problem in an
abstract constraint specification language, then compiling it to a low level model
which current constraint solvers will accept. There are many decisions to be made
at every step. These decisions have crucial impact on the actual time we spend
on solving a given problem.

We employ di↵erent tools at di↵erent levels to best handle these tasks. Con-
jure takes Essence[1] specifications and generates a portfolio of Essence0 mod-
els. Tailor[2] takes Essence0 models as input and generates e�cient Minion[3]
input files. Conjure and Tailor have the capability to work at the problem
class level, whereas Minion, the actual solver, works at the instance level.
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3 Current status

The implementation of a working version of the refinement system Conjure is
mostly complete. It is implemented as a non-deterministic term rewriting sys-
tem. The current design and implementation of Conjure uses Haskell, provides
an embedded implementation (EDSL) of the Essence language to be used by
the rule authors, and an actual implementation of the language to be used by
the problem owners. It successfully decouples the task of rewrite rule authoring
from the implementation of the language and the actual process of applying the
rewrite rules. The current rewrite rules database is a proof of concept demon-
strating the fact that we can handle almost all of the language structures.

There exists a prototype implementation of Conjure, presented in [4], which
refines a fragment of Essence limited to nested set-based decision variables into
models in the Essence0 solver independent modelling language1

Current implementation successfully supports most of the Essence types,
with minor limitations. For instance we currently do not handle function vari-
ables which map items from a nested combinatorial type to any other type.
Function variables mapping integers to any type are fully supported though.
1 Essence0

is, in turn, the input for the Tailor system [2], which transforms Essence0

models into input suitable for a particular constraint solver.
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3.1 The Architecture of Conjure

This section gives an overview of the architecture of Conjure, which is a
compiler-like system. Like most of the compilers, it has a pipeline which starts
with parsing, validating the input, and type-checking. After these foundation
phases, it has several phases for preparing the input specification for the rewriting
phase, the actual rewriting phase, and some housekeeping phases. The pipeline
is summarised below:

1. Parsing
2. Validating the input
3. Type checking the input
4. Representations phase
5. Auto-Channelling phase
6. Adding structural constraints
7. Expression rewriting
8. Fixing auxiliary and quantified variable names

Phases 1–3 are the foundation phases. The representations, auto-channelling,
and adding structural constraint phases (4–6) prepare the input specification for
the actual task of rewriting (Phase 7). Phase 8 can be viewed as housekeeping,
it makes the output models easier to read and understand. Phase 7 (expression
rewriting) is described in detail in the following sections. We will now give brief
descriptions for the three preparatory phases preceding it.

Representation phase There are typically many ways to represent a combi-
natorial object. In this phase we make the representation decisions on the
input specification in every possible way, and create multiple copies of it.

Auto-Channelling phase If we choose more than one way of representing a
combinatorial object within a specification, we automatically add channelling
constraints between di↵erent representations of the same variable at this
phase. This way we link the di↵erent representations and make sure they
represent the same combinatorial object.

Adding structural constraints At this phase we add all necessary structural
constraints on every decision variable in the specification. The structural
constraint for a representation of a decision variable makes sure the selected
representation actually represents a valid combinatorial object with the in-
tended properties. We add these constraints before rewriting take place,
because they will be added regardless of the rest of the specification and
they only depend on the representation of a combinatorial object.

3.2 Non-deterministic Rewriting

Our automated modelling system employs a term rewriting system to refine
Essence specifications into the target language Essence0. Generally, rewrite
rules can be thought of as partial functions, which map from a subterm to an
equivalent subterm [5]. Given a set of rewrite rules and a term, a rewrite system
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repeatedly applies the rules until no further rules can be applied. The term is
then said to be in normal form.

As noted earlier, in order to produce alternative models we wish to generate
not a single normal-form term, but all the normal-form terms that are attainable
by applying the given rules to the input term. For this purpose we slightly adjust
the definition of a rewrite rule: instead of a function that maps from a subterm
to an equivalent subterm, we define a rewrite rule to be a function that maps
from a subterm to a set of subterms.

Hence, a single rule in this definition is su�cient to represent the whole rule
database. This representation is natural while applying the rules, but it is not a
natural way to write them. It is, however, trivial to automate the combination
of a set of partial functions into the single function used by the implementation.

For example we can combine rule1, rule2 and rule3 in allRules as follows:
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Here rule1, rule2 and rule3 are
partial functions. However the com-
bined allRules is a total function,
which maps from a subterm to a set
of equivalent subterms.

rule1 rewrites A into B, rule2
rewrites A into C and rule3 rewrites B
into D. Since there is no rule matching
C or D they are mapped to a singleton
set of themselves.

In what follows, we will present our rules as partial mappings from single
subterms to single subterms.

Figure 1 presents the elements of a rule: the mapping denoted by the ;

operator; the guards that the left hand side of the mapping must satisfy; and
the declarations to be used while constructing the right hand side of the mapping.
Any expression that matches with the left hand side of the ; symbol is replaced
by the right hand side, if all guards are satisfied.

Figure 2 shows an example rule that matches with asubseteq constraint
between two sets of same types. It rewrites the constraint into a universal quan-
tification over the first set. Can be read as every element in set a, must also be
an element of set b. Notice also that it creates a quantified variable of type ⌧ ,
which is the type of the elements of the two sets a and b. The actual name of
the quantified variable is to be decided by the system.

essence_expression ; equivalent_expression
guards: properties that essence_expression must satisfy
declarations: newly created variables and local aliases for expressions

Fig. 1. Anatomy of a refinement rule
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a subseteq b ; forall i : a . i elem b
guards: a ⇠ set of ⌧

b ⇠ set of ⌧
declarations: i = quantifiedVar(⌧)

Fig. 2. An example rewrite rule, ruleSetSubsetEq

It is useful to view our rules as operating upon an Abstract Syntax Tree (AST)
representation of an Essence specification. In the AST, every node represents a
term in the specification and is also labelled with that term’s type. To illustrate,
Figure 3 presents a simple specification and its associated AST.

The root of the AST is the outer equality constraint, its immediate children
are the decision variable x and the intersection operator, and so on. An identifier
node, such as that associated with x, serves as a reference to the declaration of
that identifier in the specification (the find statement in the case of x).

The rewriting system works by traversing the AST and attempting to apply
the rules in the database at every node. A rule is allowed to modify the subtree
rooted at the current node, and, for contextual information, is allowed to access
(but not to modify) the remainder of the AST via the parent of the current
node. If a rule matches the current node, the whole subtree is replaced with the
equivalent subtree the rule suggests.

4 What’s next?

Having a robust implementation of the automated refinement system, we are
now one step closer to our ultimate goal, exploiting the opportunity of having
multiple equivalent models for a given problem and eventually removing the
modelling bottleneck from CSP to make it more accessible to wider audiences.

There is still a great necessity of improvements on the rules database. The
quality and quantity of generated models directly depend on the quality and
diversity of rules at hand.

given a,b : set of ⌧
find x : set of ⌧

such that
x = a intersect (b union c)
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Fig. 3. A simple Essence specification and its AST view. Note that ⌧ represents any

concrete type.
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Once we are confident about the models we generate, we will start studying
e↵ective model selection techniques. There are two basic stages where we can
benefit from having multiple models, as described below.

Static exploitation of multiple models. Most constraint models describe a
parameterised problem “class” (e.g. the class of sudoku puzzles). For input
to a constraint solver, an instance of the class is obtained by giving values for
the parameters (e.g. the pre-filled cells on the sudoku grid). We can exploit
multiple models of a problem class by using small sized training instances to
find the best-performing model, then we can use the best-performing model
to solve other instances of the problem class. Although the search through the
model space is initially uninformed, the system will learn which components
of models tend to lead to better models and use this information to inform
future model selection decisions.

Dynamic exploitation of multiple models. Constraint solvers typically em-
ploy a backtracking-style search combined with inference at each search node
(constraint propagation) in order to find solutions. Since each search deci-
sion results in a new sub-problem that di↵ers slightly from that associated
with its parent node, our initial model selection might in fact be sub-optimal
after a few decisions have been made. Hence, we can exploit multiple models
dynamically by switching model mid-search. In order to do so, we must be
confident that the new model will perform better than our current selection.
The changing structure of the problem resulting from the decisions made by
the constraint solver will provide the basis for this model selection, again
employing a machine-learning methodology.

The result of these two approaches will be significantly enhanced performance
of constraint solving, which will benefit a wide variety of industrial and academic
users with combinatorial problems to solve. It will also remove the modelling
bottleneck, in that it will no longer be necessary to have the expertise to select
the “best” model.
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